style="display:inline-block;width:728px;height:90px"
data-ad-client="ca-pub-2314356344370201"
data-ad-slot="8661381178">
Список литературы
1. Freitas Jr RA. Nanotechnology, nanomedicine and nanosurgery. Int J Surg. 2005; 3: 243-246.
2. Feynman RP. There's plenty of room at the bottom. Eng Sci. 1960; 23: 22-36.
3. Desai ТА, Chu WH, Tu JK et al. Micrqfabricated immunoisolating biocapsules. Biotechnol Bioeng. 1998; 57(1): 118—120.
4. Leoni L, Desai ТА. Nanoporous biocapsules for the encapsulation of insulinoma cells: biotransport and biocompatibility considerations. IEEE Trans Biomed Eng. 2001; 48(11): 1335-1341.
5. Nishizawa M, Menon VP, Martin CR. Metal nanotubule membranes with electrochemically switchable ion-transport selectivity. Science. 1995; 268(5211): 700-702.
6. Siwy Z, Fulinski A. Fabrication of a synthetic nanopore ion pump. Phys Rev Lett. 2002; 89(19): 198103.
7. Schmidt J 11th Foresight Conference on Molecular Nanotechnology, Palo Alto, CA (2003).
8. Cornell BA, Braach—Maksvytis VL, King LG et al. A biosensor that uses ion-channel switches. Nature. 1997; 387(6633): 580-583.
9. Meller A, Nivon L, Brandin E et al. Rapid nanopore discrimination between single polynucleotide molecules. Proc Natl Acad Sci USA. 2000; 97(3): 1079-1084.
10. Li J, Gershow M, Stein D et al. DNA molecules and configurations in a solid-state nanopore microscope. Nat Mater. 2003; 2(9): 611—615.
11. Rhee M, Burns MA. Nanopore sequencing technology: nanopore preparations. Trends Biotechnol. 2007; 25(4): 174—181.
12. Deamer DW, Akeson M. Nanopores and nucleic acids: prospects for ultrarapid sequencing. Trends Biotechnol. 2000; 18(4): 147—151.
13. Foldvari M, Bagonluri M. Carbon nanotubes as functional excipients for nanomedicines: I. pharmaceutical properties. Nanomedicine. 2008 Jun 11.
14. Foldvari M, Bagonluri M. Carbon nanotubes as functional excipients for nanomedicines: II. Drug delivery and biocompatibility issues. Nanomedicine. 2008 Jun 11.
15. Venkatesan N, Yoshimitsu J, Ito Y et al. Liquid filled nanoparticles as a drug delivery tool for protein therapeutics. Biomaterials. 2005; 26(34): 7154-7163.
16. Kam NW, O'Connell M, Wisdom JA, Dai H Carbon nanotubes as multifunctional biological transporters and near—infrared agents for selective cancer cell destruction. Proc Natl Acad Sci USA. 2005; 102: 11600-11605.
17. Wu W, Wieckowski S, Pastorin G et al. Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. Angew Chem Int Edn Engl. 2005; 44: 6358-6362.
18. Kam NW, Jessop TC, Wender PA, Dai H Nanotube molecular transporters: internalization of carbon nanotube—protein conjugates into mammalian cells. J Am Chem Soc. 2004; 126: 6850-6851.
19. Zhang Z, Yang X, Zhang Y et al. Delivery of telomerase reverse transcriptase small interfering RNA in complex with positively charged single—walled carbon nanotubes suppresses tumor growth. Clin Cancer Res. 2006; 12: 4933-4939.
20. Pantarotto D, Singh R, McCarthy D et al. Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew Chem Int Edn Engl. 2004; 43: 5242-5246.
21. Cai D, Mataraza JM, Qin ZH et al Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat Methods. 2005; 2: 449-454.
22. Shaitan K, Tourleigh Y, Golik D, Kirpichnikov M. Computer-aided molecular design of nanocontainers for inclusion and targeted delivery of bioactive compounds. J Drug Del Sci Tech. 2006; 16: 253—258.
23. Cui D, Ozkan C, Kong Y, Gao H Encapsulation of Pt-labeled DNA inside carbon nanotubes. Mech Chem Biosys. 2004; 1: 113—121.
24. Yeh 1С, Hummer G. Nucleic acid transport through carbon nanotube membranes. Proc Natl Acad Sci USA. 2004; 101: 12177-12182.
25. Schinazi RF, Sijbesma R, Srdanov G et al. Synthesis and virucidal activity of a water—soluble, configurationally stable, derivatized C60 fullerene. Antimicrob Agents Chemother. 1993; 37(8): 1707—1710.
26. Bosi S, Da Ros Т, Caste llano S et al Antimycobacterial activity of ionic fullerene derivatives. Bioorg Med Chem Lett. 2000; 10(10): 1043-1045.
27. Mroz P, Pawlak A, Satti M et al. Functionalized fullerenes mediate photodynamic killing of cancer cells: Type I versus Type IIphotochemical mechanism. Free Radic Biol Med. 2007; 43(5): 711-719.
28. Dugan LL, Lovett E, Cuddihy S et al. In Fullerenes: Chemistry, Physics, and Technology, edited by KM Kadish and RS Ruoff, John Wiley and Sons, New York (2000), p.467.
29. Cheng Y, Wang J, Rao T et al. Pharmaceutical applications of dendrimers: promising nanocarriers for drug delivery. Front Biosci. 2008; 13: 1447-1471.
30. Kojima C, Kono K, Maruyama K, Takagishi T. Synthesis of polyamidoamine dendrimers having poly (ethylene glycol) grafts and their ability to encapsulate anticancer drugs. Bioconjug Chem. 2000; 11: 910-917.
31. Fu HL, Cheng SX, Zhang XZ, Zhuo RX. Dendrimer/DNA complexes encapsulated in a water soluble polymer and supported on fast degrading star poly(DL-lactide) for localized gene delivery. J Control Release. 2007; 124: 181-188.
32. Kobayashi H, Kawamoto S, Jo SK et al. Macromolecular MRI contrast agents with small dendrimers: pharmacokinetic differences between sizes and cores. Bioconjug Chem. 2003; 14: 388—394.
33. Mecke A, Uppuluri S, Sassanella TM et al. Direct observation of lipid bilayer disruption by poly (amidoamine) dendrimers. Chem Phys Lipids. 2004; 132: 3-14.
34. Bawarski WE, Chidlowsky E, Bharali DJ Mousa SA. Emerging nanopharmaceuticals. Nanomedicine. 2008 Jul 17.
35. Fenske DB, Chonn A, Cullis PR. Liposomal nanomedicines: an emerging field. Toxicol Pathol. 2008; 36(1): 21-29.
36. Gaucher G, Dufresne MH, Sant VP et al. Block copolymer micelles: preparation, characterization and application in drug delivery. J Control Release. 2005; 109: 169-188.
37. Kwon GS. Polymeric micelles for delivery of poorly water—soluble compounds. Crit Rev Ther Drug Carrier Syst. 2003; 20: 35 7—403.
38. Fahmy TM, Fong PM, Park J et al. Nanosystems for simultaneous imaging and drug delivery to T cells. AAPS J. 2007; 9: El 71-Е 180.
39. Tanaka R, Yuhi T, Nagatani N et al. A novel enhancement assay for immunochromatographic test strips using gold nanoparticles. Anal Bioanal Chem. 2006; 385(8): 1414-1420.
40. Ou Q Yuan R, Chai Y et al. A novel amperometric immunosensor based on layer-by-layer assembly of gold nanoparticles-multi-walled carbon nanotubes-thionine multilayer films on polyelectrolyte surface. Anal Chim Acta. 2007; 603(2): 205-213.
41. Asian K, Holley P, Geddes CD. Microwave-Accelerated Metal-Enhanced Fluorescence (MAMEF) with silver colloids in 96-well plates: Application to ultra fast and sensitive immunoassays, high throughput screening and drug discovery. JImmunol Methods. 2006; 312(1-2): 137-147.
42. Georganopoulou DG, Chang L, Nam JM et al. Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer's disease. Proc Natl Acad Sci USA. 2005; 102(7): 2273-2276.
43. Doria G, Franco R, Baptista P. Nanodiagnostics: fast colorimetric method for single nucleotide polymorphism/mutation detection. IET Nanobiotechnol. 2007; 1(4): 53-57.
44. Baptista PV, Koziol-Montewka M, Paluch-Oles Jet al. Gold-nanoparticle-probe-based assay for rapid and direct detection of Mycobacterium tuberculosis DNA in clinical samples. Clin Chem. 2006; 52(7): 1433-1434.
45. Yao X, Li X, Toledo F et al. Sub-attomole oligonucleotide and p53 cDNA determinations via a high-resolution surface plasmon resonance combined with oligonucleotide-capped gold nanoparticle signal amplification. Anal Biochem. 2006; 354(2): 220-228.
46. Baptista P, Pereira E, Eaton P et al. Gold nanoparticles for the development of clinical diagnosis methods. Anal Bioanal Chem. 2008; 391(3): 943-950.
47. Mo Y, Barnett ME, Takemoto D et al. Human serum albumin nanoparticles for efficient delivery of Cu, Zn superoxide dismutase gene. MoI Vis. 2007; 13: 746-757.
48. Till MC, Simkin MM, Maebius S. Nanotech meets the FDA: a success story about the first nanoparticulate drugs approved by the FDA. Nanotechnol Law Business. 2005; 2: 163—167.
49. Damascelli B, Cantu Q Mattavelli F et al. Intraarterial chemotherapy with polyoxyethylated castor oil free paclitaxel, incorporated in albumin nanoparticles (ABI-OO7): Phase II study of patients with squamous cell carcinoma of the head and neck and anal canal: preliminary evidence of clinical activity. Cancer. 2001; 92: 2592-2602.
50. Yang SC, Lu LF, Cai Y et al. Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain. J Control Release. 1999; 59: 299-307.
51. Vasir JK, Labhasetwar V. Biodegradable nanoparticles for cytosolic delivery of therapeutics. Adv Drug Deliv Rev. 2007; 59(8): 718-728.
52. Panyam J, Zhou WZ, Prabha S et al. Rapid endo-lysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEBJ 2002; 16: 1217-1226.
53. Torchilin VP, Rammohan R, Weissig V, Levchenko TS. TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc Natl Acad Sci USA. 2001; 98: 8786-8791.
54. Sahoo SK, Labhasetwar V. Enhanced antiproliferative activity of transferrin-conjugated paclitaxel-loaded nanoparticles is mediated via sustained intracellular drug retention. MoI Pharmacol. 2005; 2: 373-383.
55. Sahoo SK, Ma W, Labhasetwar V. Efficacy of transferrin-conjugated paclitaxel—loaded nanoparticles in a murine model of prostate cancer. Int J Cancer. 2004; 112: 335-340.
56. Azzazy HM, Mansour MM, Kazmierczak SC. From diagnostics to therapy: prospects of quantum dots. Clin Biochem. 2007; 40(13-14): 917-927.
57. Hanaki K, Momo A, Oku T et al. Semiconductor quantum dot/albumin complex is a long—life and highly photostable endosome marker. Biochem Biophys Res Commun. 2003; 302(3): 496-501.
58. Lim YT, Kim S, Nakayama A et al. Selection of quantum dot wavelengths for biomedical assays and imaging. MoI Imaging. 2003; 2(1): 50—64.
59. Mattrey RF. The potential role of perfluorochemicals (PFCs) in diagnostic imaging. Artif Cells Blood Subs tit Immobil Biotechnol 1994; 22(2): 295-313.
60. Winter PM, Cai K, Caruthers SD et al. Emerging nanomedicine opportunities with perfluorocarbon nanoparticles. Expert Rev Med Devices. 2007; 4(2): 137-145.
61. Crowder КС, Hughes MS, Marsh JN et al. Sonic activation of molecularly-targeted nanoparticles accelerates transmembrane lipid delivery to cancer cells through contact-mediated mechanisms: implications for enhanced local drug delivery. Ultrasound Med Biol. 2005; 31(12): 1693-1700.
62. Winter PM, Caruthers SD, Kassner A et al Molecular imaging of angiogenesis in nascent Vx—2 rabbit tumors using a novel alpha(nu) beta3—targeted nanoparticle and 1.5 tesla magnetic resonance imaging. Cancer Res. 2003; 63(18): 5838-5843.
63. Flacke S, Fischer S, Scott MJ et al Novel MRI contrast agent for molecular imaging of fibrin: implications for detecting vulnerable plaques. Circulation. 2001; 104(11): 1280-1285.
64. Partlow КС, Chen J, Brant JA et al 19F magnetic resonance imaging for stem/progenitor cell tracking with multiple unique perfluorocarbon nanobeacons. FASEB J. 2007; 21(8): 1647-1654.
65. Tartaj P, Morales MdP, Veintemillas—Verdaguer S et al. The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys. 2003; 36(13): Rl82-197.
66. Ji X, Shao R, Elliott AM et al. Bifunctional gold nanoshells with a superparamagnetic iron oxide—silica core suitable for both MR imaging and photothermal therapy. J Phys Chem C 2007; 111(17): 6245-6251.
67. Laurent S, Forge D, Port M et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev. 2008; 108(6): 2064-2110.
68. Ishiyama K, Sendoh M, Aral KI. Magnetic micromachines for medical applications. J Magn Magn Mater 2002; 242—245: 1163-1165.
69. Mathieu JB, Martel S, Yahia L et al. MRI systems as a mean of propulsion for a microdevice in blood vessels. In: Proceedings of 25th annual international conference of the IEEE engineering in medicine and biology. 2003 Sep 17-21, Cancun, Mexico; 2003.
70. Nelson В, Rajamani R. Biomedical micro—robotic system. In: Eighth international conference on medical image computing and computer assisted intervention, 26-29 October 2005, Palm Springs, CA.
71. Drexler KE. Nanosystems: molecular machinery, manufacturing, and computation. New York: John Wiley & Sons; 1992.
72. Merkle RC, Freitas Jr RA. Theoretical analysis of a carbone carbon dimer placement tool for diamond mechanosynthesis. J Nanosci Nanotechnol 2003; 3: 319-324.
73. Freitas Jr RA. Exploratory design in medical nanotechnology: a mechanical artificial red cell. Artif Cells Blood Substit Immobil Biotechnol 1998; 26: 411-430.
74. Freitas Jr RA. Microbivores: artificial mechanical phagocytes using digest and discharge protocol. J Evol Technol. 2005; 14: 1-52.
75. Sacconi L, Tolic—Norrelykke IM, Antolini R, Pavone FS. Combined intracellular three—dimensional imaging and selective nanosurgery by a nonlinear microscope. J Biomed Opt. 2005; 10: 14002.
76. Konig K, Riemann I, Fischer P, Halbhuber KJ. Intracellular nanosurgery with near infrared femtosecond laser pulses. Cell MoI Biol. 1999; 45: 195-201.
77. Hirsch LR, Halas NJ, West JL Whole-blood immunoassay facilitated by gold nanoshell-conjugate antibodies. Methods MoI Biol. 2005; 303: Willi.
78. DeNardo SJ, DeNardo GL, Miers LA et al. Development of tumor targeting bioprobes ((lll)In-chimeric L6 monoclonal antibody nanoparticles) for alternating magnetic field cancer therapy. Clin Cancer Res. 2005; 11(19 Pt 2): 7087s-7092s.
79. Bao YP, Huber M, Wei TF et al. SNP identification in unamplified human genomic DNA with gold nanoparticle probes. Nucleic Acids Res. 2005; 33: el5.
80. Pereira RS. Atomic force microscopy as a novel pharmacological tool. Biochem Pharmacol. 2001; 62(8): 975-983.
81. Kanger JS, Subramaniam V, van Driel R. Intracellular manipulation of chromatin using magnetic nanoparticles. Chromosome Res. 2008; 16(3): 511-522.
82. Jain KK Current status of molecular biosensors. Med Device Technol. 2003; 14: 10-15.
83. Cui Y, Wei Q Park H, Lieber CM. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001; 293: 1289-1292.
84. Cornell BA. Optical biosensors: present and future. In: Lighter F, Taitt CR, editors. Membrane based biosensors. Amsterdam. Elsevier; 2002. p. 457. Chapter 12.
85. Perez JM, Simeone FJ, Saeki Y et al. Viral-induced self—assembly of magnetic nanoparticles allows the detection of viral particles in biological media. JAm Chem Soc. 2003; 125: 10192-10193.
86. Sumner JP, Aylott JW, Monson E, Kopelman R. A fluorescent PEBBLE nanosensor for intracellular free zinc. Analyst. 2002; 127: 11—16.
87. Cao Y, Lee Коо YE, Kopelman R. Poly(decyl methacrylate)—based fluorescent PEBBLE swarm nanosensors for measuring dissolved oxygen in biosamples. Analyst. 2004; 129: 745—750.
88. Gupta AK, Nair PR, Akin D et al. Anomalous resonance in a nanomechanical biosensor. Proc Natl Acad Sci USA. 2006; 103:13362— 13367.
89. Akerman ME, Chan WC, Laakkonen P et al. Nanocrystal targeting in vivo. Proc Natl Acad Sci USA. 2002; 99(20): 12617-12621.
90. Cai W, Shin DW, Chen K et al. Peptide—labeled near—infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett. 2006; 6(4): 669-676.
91. Gao X, Cui Y, Leve RM et al. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol. 2004; 22(8): 969—76.
92. Yu X, Chen L, Li K et al. Immunofluorescence detection with quantum dot bioconjugates for hepatoma in vivo. J Biomed Opt. 2007; 12(1): 014008.
93. Tada H, Higuchi H, Wanatabe TM, Ohuchi N In vivo real-time tracking of single quantum dots conjugated with monoclonal anti—HER2 antibody in tumors of mice. Cancer Res. 2007; 67(3): 1138—1144.
94. Hyafil F, Cornily JC, Feig JE et al. Noninvasive detection of macrophages using a nanoparticulate contrast agent for computed tomography. Nat Med. 2007; 13(5): 636-641.
95. Rabin O, Manuel Perez J, Grimm J et al. An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat Mater. 2006; 5(2): 118-122.
96. Reimer P, Jahnke N, Fiebich M et al. Hepatic lesion detection and characterization: value of nonenhanced MR imaging, superparamagnetic iron oxide-enhanced MR imaging, and spiral CT-ROC analysis. Radiology. 2000; 217(1): 152-158.
97. Weissleder R, Stark DD, Rummeny EJ et al. Splenic lymphoma: ferrite— enhanced MR imaging in rats. Radiology. 1988; 166(2): 423-430.
98. Mack MG, Balzer JO, Straub R et al. Superparamagnetic iron oxide-enhanced MR imaging of head and neck lymph nodes. Radiology. 2002; 222(1): 239-244.
99. Shapiro EM, Sharer K, Skrtic S, Koretsky AP. In vivo detection of single cells by MRL Magn Reson Med. 2006; 55(2): 242-249.
100. Stuckey DJ, Carr CA, Martin—Rendon E et al. Iron particles for noninvasive monitoring of bone marrow stromal cell engrqftment into, and isolation of viable engrafted donor cells from, the heart. Stem Cells. 2006; 24(8): 1968-1975.
101. Sipkins DA, Cheresh DA, Kazemi MR et al. Detection of tumor angiogenesis in vivo by alphaVbeta3—targeted magnetic resonance imaging. Nat Med. 1998; 4(5): 623-626.
102. Winter PM, Neubauer AM, Caruthers SD et al. Endothelial alpha(v) beta3 integrin—targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis. Arterioscler Thromb Vase Biol. 2006; 26(9): 2103-2109.
103. Lanza GM, Yu X, Winter PM et al. Targeted antiproliferative drug delivery to vascular smooth muscle cells with a magnetic resonance imaging nanoparticle contrast agent: implications for rational therapy of restenosis. Circulation. 2002; 106(22): 2842-2847.
104. Hu G, Lijowski M, Zhang H et al. Imaging of Vx-2 rabbit tumors with alpha(nu)beta3—integrin—targeted 11 Hn nanoparticles. Int J Cancer. 2007; 120(9): 1951-1957.
105. Liu Z, Cai W, He L et al. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol. 2007; 2(1): 47-52.
106. Mulder WJ, Strijkers GJ, Habets JW et al. MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle. FASEB J. 2005; 19(14): 2008-2010.
107. Cai W, Chen K, Li ZB et al. Dual-function probe for PET and near-infrared fluorescence imaging of tumor vasculature. J Nucl Med. 2007; 48(11): 1862-1870.
108. Medarova Z, Pham W, Farrar C In vivo imaging of siRNA delivery and silencing in tumors. Nat Med. 2007; 13(3): 372-377.
109. Bray den DJ Controlled release technologies for drug delivery. Drug Discov Today. 2003; 8: 976-978.
110. Nelson JL, Roeder BL, Carmen JC et al. Ultrasonically activated chemotherapeutic drug delivery in a rat model. Cancer Res. 2002; 62: 7280-7283.
111. Meyer DE, Shin ВС, Kong GA et al. Drug targeting using thermally responsive polymers and local hyperthermia. J Control Release. 2001; 74:213-224.
112. Woodle MC Surface-modified liposomes: assessment and characterization for increased stability and prolonged blood circulation. Chem Phys Lipids. 1993; 64: 249-262.
113. Allen TM, Everest JM. Effect of liposome size and drug release properties on pharmacokinetics of encapsulated drug in rats. J Pharmacol Exp Ther. 1983; 226: 539-544.
114. Bimbaum Y, Luo H, Nagai T et al. Noninvasive in vivo clot dissolution without a thrombolytic drug: recanalization of thrombosed iliofemoral arteries by transcutaneous ultrasound combined with intravenous infusion of microbubbles. Circulation. 1998; 97(2): 130-134.
115. Daffertshofer M, HennericiM. Sonothrombolysis: experimental evidence. Front Neurol Neurosci. 2006; 21: 140-149.
116. UngerE. Treatment of ischemic stroke with nanobubbles and ultrasound. JAcoust Soc Am. 2006; 119(5): 3437.
117. Chnari E, Nikitczuk JS, Uhrich KE, Moghe PV. Nanoscale anionic macromolecules can inhibit cellular uptake of differentially oxidized LDL Biomacromolecules. 2006; 7: 597—603.
118. Cavalcanti A, Shirinzadeh B, Kretly LC Medical nanorobotics for diabetes control. Nanomedicine. 2008; 4(2): 127-138.
119. Gough DA, Bremer Т. Immobilized glucose oxidase in implantable glucose sensor technology. Diabetes Technol Ther. 2000; 2(3): 377-380.
120. Hartman KB, Wilson Li, Rosenblum MG Detecting and treating cancer with nanotechnology. MoI Diagn Ther. 2008; 12(1): 1-14.
121. Gobin AM, Lee MH, Halas NJ et al. Near—infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett. 2007; 7(7): 1929-1934.
122. Toma A, Otsuji E, Kuriu Y et al. Monoclonal antibody A7-superparamagnetic iron oxide as contrast agent of MR imaging of rectal carcinoma. Br J Cancer. 2005; 93(1): 131—136.
123. Funovics MA, Kapeller B, Hoeller C et al. MR imaging of the her2/neu and 9.2.27 tumor antigens using immunospecific contrast agents. Magn Reson Imaging. 2004; 22(6): 843-850.
124. Sun C, Sze R, Zhang M. Folic acid—PEG conjugated superparamagnetic nanoparticles for targeted cellular uptake and detection by MRL J Biomed Mater Res A. 2006; 78(3): 550-557.
125. Johannsen M, Gneveckow U, Taymoorian K et al. Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: results of a prospective phase I trial Int J Hyperthermia. 2007; 23(3): 315-323.
126. Ashcroft JM, Tsyboulski DA, Hartman KB et al Fullerene (C60) immunoconjugates: interaction of water—soluble C60 derivatives with the murine anti—gp240 melanoma antibody. Chem Commun. 2006; 28: 3004-3006.
127. Rancan F, Helmreich M, Moelich A et al Synthesis and in vitro testing of a pyropheophorbide—a—fullerene hexakis adduct immunoconjugate for photodynamic therapy. Bioconj Chem. 2007; 18(4): 1078-1086.
128. Lammers T, Hennink WE, Storm G. Tumour-targeted nanomedicines: principles and practice. Br J Cancer. 2008; 99(3): 392—397.
129. Powanda D, Chang TMS. Cross-linked PolyHbsuperoxide dismutase-catalase supplies oxygen without causing blood brain barrier disruption or brain edema in a rat model of transient global brain ischemia-reperfusion. Artif. Cells Blood Substitutes Immobilization Biotechnol 2002; 30: 25-42.
130. Chang TM, Powanda D, Yu WP. Analysis of polyethylene-glycol-polylactide nano-dimension artificial red blood cells in maintaining systemic hemoglobin levels and prevention of methemoglobin formation. Artif Cells Blood Substit Immobil Biotechnol. 2003; 31(3): 231-247.
131. Pison U, Welte T, Giersig M, Groneberg DA. Nanomedicine for respiratory diseases. Eur J Pharmacol. 2006; 533(1-3): 341-350.
132. John AE, Lukacs NW, Berlin AA et al. Discovery of a potent nanoparticle P—selectin antagonist with anti—inflammatory effects in allergic airway disease. FASEBJ 2003; 17(15): 2296-2298.
133. Kumar M, Kong X, Behera AK et al Chitosan IFN-gamma-pDNA nanoparticle (CIN) therapy for allergic asthma. Genet Vaccines Ther. 2003; 1(1): 3.
134. Truong-Le VL, Walsh SM, Schweibert E et al. Gene transfer by DNA-gelatin nanospheres. Arch Biochem Biophys. 1999; 361(1): 47-56.
135. Pandey R, Sharma A, Zahoor A et al. Poly (DL-lactide-co-glycolide) nanoparticle-based inhalable sustained drug delivery system for experimental tuberculosis. 2003; J Antimicrob Chemother. 2003; 52: 981-986.
136. Kumar M, Behera AK, Lockey RF et al Intranasal gene transfer by chitosan—DNA nanospheres protects BALB/c mice against acute respiratory syncytial virus infection. Hum Gene Ther. 2002, 13: 1415-1425.
137. Hu H, Ni Y, Montana Vetal. Chemically functionalized carbon nanotubes as substrates for neuronal growth. Nano Lett. 2004; 4: 507-511.
138. Hu H, Ni Y, Mandal SK et al Polyethyleneimine functionalized single-walled carbon nanotubes as a substrate for neuronal growth. JPhys Chem B Condens Matter Mater Surf Interfaces Biophys. 2005; 109: 4285-4289.
139. Mattson MP, Haddon RQ Rao AM. Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth. J MoI Neurosci. 2000; 14: 175-182.
140. Lovat V, Pantarotto D, Lagostena L et al. Carbon nanotube substrates boost neuronal electrical signaling. Nano Lett. 2005; 5: 1107-1110.
141. Zanello LP, Zhao B, Hu H, Haddon RC Bone cell proliferation on carbon nanotubes. Nano Lett. 2006; 6: 562—567.
142. Boudriot Ц Dersch R, Goetz B et al. Electrospun poly-llactide nanofibres as scaffolds for tissue engineering (in German). Biomed Tech (Berl) 2004; 49: 242-247.
143. Sato M, Aslani A, Sambito MA et al. Nanocrystalline hydroxy apatite/ titania coatings on titanium improves osteoblast adhesion. J Biomed Mater Res A. 2008; 84(1): 265-272.
144. Huang J, Jayasinghe SN, Best SM et al. Novel deposition of nano-sized silicon substituted hydroxy apatite by electrostatic spraying. J Biomed Mater Res. 2005; 16: 1137-1142.
145. Price RL, Waid MQ Haberstroh KM, Webster TJ Selective bone cell adhesion on formulations containing carbon nanoflbers. Biomaterials. 2003; 24: 1877-1887.
146. Vandervoort J, Ludwig A. Ocular drug delivery: nanomedicine applications. Nanomedicine. 2007; 2: 11—21.
147. Li H, Tran W, Hu Y et al A PEDF N-terminal peptide protects the retina from ischemic injury when delivered in PLGA nanospheres. Exp Eye Res. 2006; 83(4): 824-833.
148. De la Fuente M, Seijo B, Alonso MJ. Novel hyaluronic acid-chitosan nanoparticles for ocular gene therapy. Invest Ophthalmol Vis Sci. 2008; 49(5): 2016-2024.
149. Lee SB, Koepsel R, Stolz DB et al. Self-assembly of biocidal nanotubes from a single-chain diacetylene amine salt. J Am Chem Soc. 2004; 126(41): 13400-13405.
150. Kim JS, Кик E, Yu KN et al. Antimicrobial effects of silver nanoparticles. Nanomedicine. 2007; 3(1): 95-101.
151. Chen X, Schluesener HJ Nanosilver: a nanoproduct in medical application. Toxicol Lett. 2008; 176(1): 1-12.
152. Freitas Jr RA. Nanodentistry. J Am Dent Assoc. 2000; 131: 1559-1565.
153. Donaldson K9 Stone V9 Tran CL et al. Nanotoxicology. Occup Environ Med. 2004; 61: 727-728.
154. Stern ST, McNeil SE. Nanotechnology safety concerns revisited. Toxicol Sci. 2008; 101(1): 4-21.
155. Sioutas C, Delfino RJ, Singh M. Exposure assessment for atmospheric ultrafine particles (UFPs) and implications in epidemiologic research. Environ Health Perspect. 2005; 113: 947-955.
156. Oberdorster G. Toxicology of ultrafine particles: In vivo studies. Philos Trans R Soc Lond. 2000; A 358: 2719-2740.
157. Radomski A, Jurasz P, Alonso—Escolano D et al. Nanoparticle—induced platelet aggregation and vascular thrombosis. Br J Pharmacol. 2005; 146: 882-893.
158. Kreyling WG, Semmler M, Erbe F et al. Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol Environ Health Part A. 2002; 65: 1513-1530.
159. Brown JS, Zeman KL, Bennett WD. Ultrafine particle deposition and clearance in the healthy and obstructed lung. Am J Respir Crit Care Med. 2002; 166: 1240-1247.
160. Elder A, Gelein R, Silva V et al. Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ Health Perspect. 2006; 114: 1172-1178.
161. de Lorenzo AJ. The olfactory neuron and the blood—brain barrier. In Taste and Smell in Vertebrates (G. Wolstenholme and J. Knight, Eds.), pp. 151-176. London: J&A Churchill. 1970.
162. Hussain SM, Javorina AK, Schrand AM et al. The interaction of manganese nanoparticles with PC—12 cells induces dopamine depletion. Toxicol Sci. 2006: 92: 456-463.
163. Gamer AO, Leibold E, van Ravenzwaay B. The in vitro absorption of microfine zinc oxide and titanium dioxide through porcine skin. Toxicol In Vitro. 2006; 20: 301-307.
164. Mavon A, Miquel C, Lejeune O et al. In vitro percutaneous absorption and in vivo stratum corneum distribution of an organic and a mineral sunscreen. Skin Pharmacol. Physiol. 2007; 20: 10—20.
165. Nohynek GJ, Lademann J, Ribaud C, Roberts M.S. Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety. Crit Rev Toxicol. 2007; 37: 251-277.
166. Ryman—Rasmus sen JP, Riviere JE, Monteiro—Riviere NA. Penetration of intact skin by quantum dots with diverse physicochemical properties. Toxicol Sci. 2006; 91: 159-165.
167. Baroli B, Ennas MG, Loffredo F et al. Penetration of metallic nanoparticles in human fullthickness skin. J Invest Dermatol. 2007; 127: 1701-1712.
168. Hussain N, Jaitley V, Florence AT. Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics. Adv Drug Deliv Rev. 2001; 50: 107-142.
169. Dick CA, Brown DM, Donaldson K, Stone V. The role of free radicals in the toxic and inflammatory effects of four different ultrafine particle types. Inhal Toxicol. 2003; 15: 39-52.
170. Xia T, Kovochich M, Brant J et al. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett. 2006; 6: 1794—1807.
171. Oberdorster G, Ferin J, Lehnert BE. Correlation between particle size, in vivo particle persistence, and lung injury. Environ Health Perspect. 1994; 102 (Suppl. 5): 173-179.
172. Donaldson K, Brown D9 Clouter A et al. The pulmonary toxicology of ultrafine particles. J Aerosol Med. 2002; 15: 213—220.
173. Sayes CM, Wahi R, Kurian PA et al. Correlating nanoscale titania structure with toxicity: A cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci. 2006; 92: 174-185.
174. Warheit DB, Webb TR, CoMn VL et al Pulmonary bioassay studies with nanoscale and fine quartz particles in rats: toxicity is not dependent upon particle size but on surface characteristics. Toxicol Sci 2006; 95: 270-280.
175. Warheit DB, Laurence BR, Reed KL et al. Comparative pulmonary toxicity assessment of single—wall carbon nanotubes in rats. Toxicol Sci. 2004: 77: 117-125.
176. Carrero—Sanchez JC, Elias AL, Mancilla R. et al. Biocompatibility and toxicological studies of carbon nanotubes doped with nitrogen. Nano Lett. 2006; 6: 1609-1616.
177. Shvedova AA, Kisin ER, Mercer R et al. Unusual inflammatory and fibrogenic pulmonary responses to single—walled carbon nanotubes in mice. Am J Physiol Lung Cell MoI Physiol. 2005; 289: L698-L70Q.
178. Sato Y, Yokoyama A9 Shibata K et al. Influence of length on cytotoxicity of multi—walled carbon nanotubes against human acute monocytic leukemia cell line THP-I in vitro and subcutaneous tissue of rats in vivo. MolBiosyst. 2005; 1: 176-182.
179. Neerman MF9 Zhang W9 Parrish AR9 Simanek EE. In vitro and in vivo evaluation of a melamine dendrimer as a vehicle for drug delivery. Int J Pharm. 2004; 281: 129-132.
180. Thibodeau MS, Giardina C, Knecht DA et al. Silica—induced apoptosis in mouse alveolar macrophages is initiated by lysosomal enzyme activity. Toxicol Sci. 2004; 80: 34-48.
181. Chen Y9 YangL, Feng C, Wen LP. Nano neodymium oxide induces massive vacuolization and autophagic cell death in поп—small cell lung cancer NCI-H460 cells. Biochem Biophys Res Commun. 2005; 337: 52-60.
182. Seleverstov O9 Zabirnyk O, Zschdmack M et al. Quantum dots for human mesenchymal stem cells labeling. A size—dependent autophagy activation. Nano Lett. 2006; 6: 2826-2832.
183. Yamawaki Н, Iwai N. Cytotoxicity of water—soluble fullerene in vascular endothelial cells. Am J Physiol Cell Physiol 2006; 290: C1495-C1502.
184. Nelson MA, Domann FE, Bowden GT et al. Effects of acute and subchronic exposure of topically applied fullerene extracts on the mouse skin. Toxicol Ind Health. 1993; 9: 623—630.
185. Mori T, Takada H, Ito S et al. Preclinical studies on safety of fullerene upon acute oral administration and evaluation for no mutagenesis. Toxicology. 2006; 225: 48-54.
186. Sera N, Tokiwa H, Miyata N. Mutagenicity of thefullerene C60—generated singlet oxygen dependent formation of lipid peroxides. Carcinogenesis. 1996; 17: 2163-2169.
<<< Назад | Читать дальше >>>
Нанотехнологии в биологии и медицине: современное состояние вопроса
Нанотехнологии в биологии и медицине. Коллективная монография под ред. чл.-корр. РАМН, проф. Е. В. Шляхто. 2009 г.
- Добавить комментарий
- 7793 просмотра
style="display:inline-block;width:728px;height:90px"
data-ad-client="ca-pub-2314356344370201"
data-ad-slot="8661381178">